EC Perspective on Connectivity and Smart Mobility and the Role of "Digital Co-production/Co-creation" in Transportation

Roadmap to a Single European Transport Area

Towards a competitive and resource efficient transport system

- **To meet the challenges**, transport has to:
 - Use less energy
 - Use cleaner energy
 - Exploit efficiently a multimodal, integrated and 'intelligent' network
- Curbing mobility is not an option
- By 2050 reduce emissions by 60%, and 20% by 2020 (2008 level)
- **By 2050 move close to zero fatalities** in road transport, halving road casualties by 2020

ICT in Mobility – some figures*

- Electronics is the enabler and the driver behind 60% of current vehicle innovations. For premium vehicles it may be 80%
- Semiconductor content per car is growing by 4–5% a year.
- Semiconductor content of an **electric/hybrid car is roughly twice that of than an average car**.
- ICT could account for 40% of value in a FEV
- Europe may account for 25% of the global FEV sales in 2020
- Global market for ICT in FEVs is around **15 B€ in 2020** (conservative estimate)

*Excerpts of study on 'Impact of ICT R&D on the Large-scale Deployment of the Electric Vehicle

European Commission

What means ICT in Mobility ?

ICT within the vehicle

- Efficient components & systems
- Active & Passive Safety
- Strategic technologies (batteries & e-motors)

Connectivity (V2X)

- Integration into smart infrastructures (grid, cities)
- Efficient routing
- Safety
- Services

- ICTs will play a key role in Research and Innovation which will bring excellent research results to market.
- ICTs will enable development of smart intelligent transport systems and interoperable interconnected solutions
- A particular strength is that ICTs allow to pursue an interdisciplinary approach, cross-fertilisation and interoperability.

Connected car?

Link: http://www.etsi.org/images/files/membership/ETSI ITS 09 2012.jpg

What does Automation in road transport stand for?

- The automated vehicle should be conceived within a cooperative systems environment:
 - Equipped with sensors (IoT) and functions to travel around with minimum or no effort by the driver
 - The driver stays in the loop and must be ready to take over control
 - Communicate and coordinate with other vehicles, the roadside infrastructure, and the transport cloud

Why do we need automation in road transport?

- Improving safety
 - Majority of accidents caused by human errors
 - Early automated active safety functions already exist (e.g. ABS ESP)
 - Passive safety will always have limitations
- Energy efficiency
 - Already displayed by platooning and ACC
- Optimising existing transport system
- New services enabled by connected automated car

Automated driving:

- In the context of "Vehicle as a service access platform"
- DG CNECT: focus on ICT-aspects of automated driving:
 - Data security (generation, communication, storage, computation)
 - Connectivity:
 - 5.9 GHz dedicated C-ITS band (G5)
 - Via mobile network
 - Cross-sector cooperation and interoperability

iMobility Forum: WG on Automation

Supporting the deployment of intelligent mobility in Europe including stakeholder networking, deployment support, awareness raising and dissemination of results in the field of ICT

iMobility Forum Web site:

www.imobilitysupport.eu/imobility-forum/working-groups/automation

ERTRAC Technology Platform: Task Force on "Connectivity and automated driving"

Preparation of roadmaps on future research & development activities up to 2030 E R T R A C

ERTRAC Web site: http://www.ertrac.org/

The C-ITS Deployment Platform

Objective: "Developing a shared vision and a roadmap for the Deployment of Cooperative Systems in the EU"

Public-Private partnership: On content, process development and ownership of final outcome

Analysis of cross-cutting blocking factors and enablers: technical, legal, organisational, policy and administrative

Outcome: Building blocks for a "Communication by the European Commission on the Deployment of C-ITS" What has to be done by whom and when? Early 2016

Automated Road Transport: topics and budget – Total EU contribution: EUR 114 Mio

Торіс	Title	Action type	Stages	Budget (EUR Mio)	
				2016	2017
ART-02	Automation pilots for passenger cars	IA	2	10	
ART-04	Safety and end-user acceptance aspects of road automation in the transition period	RIA	2	48	n rear rear r Te
ART-05	Road infrastructure to support the transition to automation and the coexistence of conventional and automated vehicles on the same network	RIA	2	13	: ka wa r k
ART-06	Coordination of activities in support of road automation	CSA	1	3	1
ART-01	ICT infrastructure to enable the transition towards road transport automation	IA	2	a ng na n	10 1 101 101 1
ART-03	Multi-Brand platooning in real traffic conditions	IA	2		50
ART-07	Full-scale demonstration of urban road transport automation	IA	2		

CSA = Coordination and Support Action IA = Innovation Action; RIA = Research and Innovation Action

EC Fellowship @ UC Berkeley

Co-production (with digital)

"Coproduction is a way of planning, designing, delivering, monitoring and evaluating digital public services which, with the help of technology, draws on direct input and domain skills and experiences from citizens, service users, civil society organizations and social enterprises to produce agreed outcomes and increase public and/or social value".

Open, Innovative and Collaborative Government

'Vision for Public Services':

https://ec.europa.eu/digital-agenda/en/ict-enabled-public-sector-innovation-through-open-government

Cities, an ideal test bed for innovation

In a society where a dynamically, a nev transcends industr to make our enviror tric' and comfortab

E

8

Catch dialogue from equipments

Manage and maintain health

Z

ment

Four Critical Imperatives to deliver a High Quality Intelligent Tranportation System (Source F&S)

Predicting to many the company grant botto on a sets an enforcement of the part of the part of the set of

The first rule of good service is having a deep understanding of the customer, and ITS technology e Engage of them Intervention and the shared and aggregated, it can increase the efficacy of decision-making and planning efforts, and ultimately increases customer satisfaction and subsequent adoption of public transit.

own web mo

from MobileReference

Thank you for your attention

Q&A